Preview

Russian Pediatric Journal

Advanced search

Clinical genetic characteristics of metaphyseal chondrodysplasia, McKusick type (cartilage-hair hypoplasia) in children caused by mutations in the RMRP gene: authors’ observations and literature review

https://doi.org/10.15690/rpj.v2i1.2191

Abstract

Introduction. Metaphyseal chondrodysplasia, McKusick type (MCD) (OMIM: #250250) (cartilage-hair hypoplasia) is a rare, autosomal recessive disorder with main clinical manifestations including disproportionate short stature, hair thinning and hypotrichosis. Some patients with MCD develop cellular and humoral immunodeficiency, bronchiectases and Hirschsprung disease. Such patients have an increased risk of developing malignant tumors and hypoplastic anemia. MCD is one of the rare monogenic disorders caused by mutations in the RMRP gene encoding a non-coding RNA instead of a protein. So far, 123 pathogenic RMRP variants have been described. The evidence of clinical genetic correlations in patients with different types and localization of gene mutations will facilitate further understanding of pathogenetic mechanisms of the disorder and enable to predict the spectrum and severity of clinical symptoms in individual patients.

Materials and methods. We present the first description of clinical genetic characteristics of two Russian patients with MCD caused by mutations in the RMRP gene, along with the comparison of our results with literature data. In both cases the diagnosis was confirmed by analyzing the RMRP gene sequence using the direct Sanger sequencing technique.

Results. Analysis of specific clinical signs observed during clinical examination of our patients in comparison with those reported in literature has shown the presence of typical skeletal and extraskeletal manifestations suggestive of MCD. In Russian patients we found the major mutation previously described in the Amish and Finnish populations, n.71A>G, present in compound heterozygous state, along with two other mutations: in one patient with an earlier described n.80G>A mutation, and in the other — a newly detected n.76C>T mutation. All detected mutations were mapped to a highly conserved region of the first domain that plays a major role in the functioning of the endoribonuclease complex.

Conclusions. Considering the small size of the RMRP gene and presence of specific signs of MCD, the most accurate and inexpensive method of molecular genetic analysis is the detection of mutations in the RMRP gene using direct automated Sanger sequencing. Timely diagnosis of MCD enables to choose the correct follow-up strategy for patients with this disorder.

About the Authors

T. V. Markova
N. P. Bochkov Research Center for Medical Genetics, Ministry of Education and Science of the Russian Federation
Russian Federation

Tatiana V. Markova

Moscow



V. M. Kenis
H. Turner National Medical Research Center for Сhildren's Orthopedics and Trauma Surgery, Ministry of Health of the Russian Federation
Russian Federation

Vladimir M. Kenis

Saint-Petersburg



M. G. Sumina
Clinical Diagnostic Center “Mother and Child Healthcare”
Russian Federation

Maria G. Sumina

Yekaterinburg



O. A. Shchagina
N. P. Bochkov Research Center for Medical Genetics, Ministry of Education and Science of the Russian Federation
Russian Federation

Olga A. Shchagina

Moscow



T. S. Nagornova
N. P. Bochkov Research Center for Medical Genetics, Ministry of Education and Science of the Russian Federation
Russian Federation

Tatiana S. Nagornova

Moscow



E. V. Melchenko
H. Turner National Medical Research Center for Сhildren's Orthopedics and Trauma Surgery, Ministry of Health of the Russian Federation
Russian Federation

Evgenii V. Melchenko

Saint-Petersburg



E. B. Nikolaeva
Clinical Diagnostic Center “Mother and Child Healthcare”
Russian Federation

Elena B. Nikolaeva

Yekaterinburg



E. L. Dadali
N. P. Bochkov Research Center for Medical Genetics, Ministry of Education and Science of the Russian Federation
Russian Federation

Elena L. Dadali

Moscow



References

1. McKusick VA, Eldridge R, Hostetler JA, et al. Dwarfism in the Amish. II. Cartilage-hair hypoplasia. Bull Johns Hopkins Hosp. 1965;116:285–326.

2. Mäkitie O, Kaitila I. Cartilage-hair hypoplasia-clinical manifestations in 108 Finnish patients. Eur J Pediatr. 1993;152(3):211–217. doi: 10.1007/BF01956147

3. Ridanpää M, van Eenennaam H, Pelin K, et al. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell. 2001;104(2):195–203. doi: 10.1016/s0092-8674(01)00205-7

4. Mäkitie O, Rajantie J, Kaitila I. Anaemia and macrocytosis — unrecognized features in cartilage-hair hypoplasia. Acta Paediatr. 1992;81(12):1026–9. doi: 10.1111/j.1651-2227.1992.tb12168.x

5. Williams MS, Ettinger RS, Hermanns P, et al. The natural history of severe anemia in cartilage-hair hypoplasia. Am J Med Genet A. 2005;138(1):35–40. doi: 10.1002/ajmg.a.30902

6. Mäkitie O, Pukkala E, Teppo L, Kaitila I. Increased incidence of cancer in patients with cartilage-hair hypoplasia. J Pediatr. 1999;134(3):315–318. doi: 10.1016/s0022-3476(99)70456-7

7. Taskinen M, Ranki A, Pukkala E, et al. Extended follow-up of the Finnish cartilage-hair hypoplasia cohort confirms high incidence of non-Hodgkin lymphoma and basal cell carcinoma. Am J Med Genet A. 2008;146A(18):2370–2375. doi: 10.1002/ajmg.a.32478

8. Kaitila I, Perheentupa J. Cartilage-hair hypoplasia (CHH). In: Eriksson AW, Forsius HR, Nevanlinna HR, eds. Population Structure and Genetic Disorders. New York: Academic Press (pub.); 1980. pp. 588–591.

9. Mäkitie O. Cartilage-hair hypoplasia in Finland: epidemiological and genetic aspects of 107 patients. J Med Genet. 1992;29(9):652– 655. doi: 10.1136/jmg.29.9.652

10. Hsieh C-L, Donlon TA, Darras BT, et al. The gene for the RNA component of the mitochondrial RNA-processing endoribonuclease is located on human chromosome 9p and on mouse chromosome 4. Genomics. 1990; 6(3):540–544. doi: 10.1016/0888-7543(90)90483-b

11. Clayton DA. A big development for a small RNA. Nature. 2001;410(6824):29–31. doi: 10.1038/35065191

12. Bonafe L, Schmitt K, Eich G, et al. RMRP gene sequence analysis confirms a cartilage-hair hypoplasia variant with only skeletal manifestations and reveals a high density of single-nucleotide polymorphisms. Clin Genet. 2002;61(2):146–151. doi: 10.1034/j.1399-0004.2002.610210.x

13. Horn D, Rupprecht E, Kunze J, Spranger J. Anauxetic dysplasia, a spondylometaepiphyseal dysplasia with extreme dwarfism. J Med Genet. 2001;38(4):262–5. doi: 10.1136/jmg.38.4.262

14. Mäkitie O, Vakkilainen S, Thiel CT. Cartilage-Hair Hypoplasia — Anauxetic Dysplasia Spectrum Disorders. March 15, 2012; Last Update: August 6, 2020. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993–2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK84550. Accessed on April 5, 2021.

15. Ridanpää M, Sistonen P, Rockas S, et al. Worldwide mutation spectrum in cartilage-hair hypoplasia: ancient founder origin of the major 70A-G mutation of the untranslated RMRP. Eur J Hum Genet. 2002;10(7):439–447. doi: 10.1038/sj.ejhg.5200824

16. Ridanpää M, Jain P, McKusick VA, et al. The major mutation in the RMRP gene causing CHH among the Amish is the same as that found in most Finnish cases. Am J Med Genet C Semin Med Genet. 2003;121C(1):81–83. doi: 10.1002/ajmg.c.20006

17. Nakashima E, Mabuchi A, Kashimada K, et al. RMRP mutations in Japanese patients with cartilage-hair hypoplasia. Am J Med Genet A. 2003;123A(3):253–256. doi: 10.1002/ajmg.a.20281

18. Gomes ME, Calatrava Paternostro L, Moura VR, et al. Identification of Novel and Recurrent RMRP Variants in a Series of Brazilian Patients with Cartilage-Hair Hypoplasia: McKusick Syndrome. Mol Syndromol. 2020;10(5):255–263. doi: 10.1159/000501892

19. Steinbusch MMF, Caron MMJ, Surtel DAM, et al. Expression of RMRP RNA is regulated in chondrocyte hypertrophy and determines chondrogenic differentiation. Sci Rep. 2017;7(1):6440. doi: 10.1038/s41598-017-06809-5

20. Mäkitie O, Sulisalo T, de la Chapelle A, Kaitila I. Cartilage-hair hypoplasia. J Med Genet. 1995;32(1):39–43. doi: 10.1136/jmg.32.1.39

21. Coupe RL, Lowry RB. Abnormality of the hair in cartilagehair hypoplasia. Dermatologica. 1970;141(1):329–334. doi: 10.1159/000252497

22. Narayanan DL, Shukla A, Siddesh AR, et al. Cartilage hair hypoplasia: two unrelated cases with g.70 A > G mutation in RMRP gene. Indian J Pediatr. 2016;83(9):1003–1005. doi: 10.1007/s12098-015-1947-4

23. Kostjukovits S, Klemetti P, Föhr A, et al. High prevalence of bronchiectasis in patients with cartilage-hair hypoplasia. J Allergy Clin Immunol. 2017;139(1):375–378. doi: 10.1016/j.jaci.2016.07.023

24. Rider NL, Morton DH, Puffenberger E, et al. Immunologic and clinical features of 25 Amish patients with RMRP 70 A-->G cartilage hair hypoplasia. Clin Immunol. 2009;131(1):119–128. doi: 10.1016/j.clim.2008.11.001

25. Faitelson Y, Manson D. Cartilage-hair hypoplasia: a spectrum of clinical and radiological findings. LymphoSign Journal. 2015;2(3):157–164. doi: 10.14785/lpsn-2015-0009

26. Klemetti P, Valta H, Kostjukovits S, et al. Cartilage-hair hypoplasia with normal height in childhood-4 patients with a unique genotype. Clin Genet. 2017;92(2):204–207. doi: 10.1111/cge.12969

27. Mäkitie O, Heikkinen M, Kaitila I, Rintala R. Hirschsprung's disease in cartilage-hair hypoplasia has poor prognosis. J Pediatr Surg. 2002;37(11):1585–1588. doi: 10.1053/jpsu.2002.36189

28. Thiel CT, Mortier G, Kaitila I, et al. Type and level of RMRP functional impairment predicts phenotype in the cartilage hair hypoplasia-anauxetic dysplasia spectrum. Am J Hum Genet. 2007;81(3):519–529. doi: 10.1086/521034

29. Vakkilainen S, Costantini A, Taskinen M, et al. Metaphyseal dysplasia without hypotrichosis’ can present with late-onset extraskeletal manifestations. J Med Genet. 2020;57(1):18–22. doi: 10.1136/jmedgenet-2019-106131


Review

For citations:


Markova T.V., Kenis V.M., Sumina M.G., Shchagina O.A., Nagornova T.S., Melchenko E.V., Nikolaeva E.B., Dadali E.L. Clinical genetic characteristics of metaphyseal chondrodysplasia, McKusick type (cartilage-hair hypoplasia) in children caused by mutations in the RMRP gene: authors’ observations and literature review. Russian Pediatric Journal. 2021;2(1):5-12. (In Russ.) https://doi.org/10.15690/rpj.v2i1.2191

Views: 1445


ISSN 2687-0843 (Online)