Preview

Russian Pediatric Journal

Advanced search

The Assessment of the Effectiveness of Ultrasound and Near-Infrared Spectroscopy of the Lungs for the Differential Diagnosis of Transient Tachypnea of Newborns and Congenital Pneumonia in Children over 350 Weeks of Gestation. The Prospective Study

https://doi.org/10.15690/rpj.v5i4.2844

Abstract

Background. The most common cause of respiratory disorders (RD) in the first hours after birth in children older than 35 weeks of gestation are transient tachypnea of the newborns (TTN) and early neonatal infection, in particular, congenital pneumonia (CP). However, in the first 4 hours of life, there are no reliable methods for diagnosing these diseases. The aim of the study is to evaluate the effectiveness of ultrasound (US) and near-infrared spectroscopy (NIRS) of the lungs for the differential diagnosis of TTN and CP in children older than 35 weeks of gestation. Methods. A prospective single-center cohort study based on the Yekaterinburg Clinical Perinatal Center. Newborns older than 35 weeks of gestation with the development of RD in the first 4 hours of life were included, the sample size was 200 children. Upon admission to NICU, he performed studies: US and NIRS of the lungs on the lateral and posterior surfaces of the chest on both sides. A comparative analysis of the score of lung US and NIRS indicators in patients with TTN and CP was carried out. Results. During the study and subsequent analysis of the results, it was revealed that the studied methods for the differential diagnosis of TTN and CP have sensitivity and specificity, respectively: only US of the lungs 75.9% and 57.0%; only lung NIRS 77.6% and 74.6%; US and lung NIRS 86.2% and 84.5% together, the area under the curve 0.898, 95% CI 0.854–0.943, р < 0,001. There is also evidence that the pattern of consolidation in the lungs is significantly more often recorded by US at VP (р < 0,001). Conclusion. The study showed that the combined usage of US and lung NIRS has high sensitivity and specificity for the differential diagnosis of TTN and CP and is a promising method for early diagnosis of these diseases.

About the Authors

Evgenii V. Shestak
Yekaterinburg Clinical Perinatal Center; Ural State Medical University
Russian Federation

Evgenii V. Shestak, MD, PhD,

Yekaterinburg.

3, Komvuzovskaya Str., Yekaterinburg, 620066

DISCLOSURE OF INTEREST: Not declared



Olga P. Kovtun
Ural State Medical University
Russian Federation

Olga P. Kovtun, MD, PhD, Professor, Academician of the RAS;

Yekaterinburg.

DISCLOSURE OF INTEREST: Not declared.



Vadim Yu. Starkov
Yekaterinburg Clinical Perinatal Center; Ural State Medical University
Russian Federation

Vadim Yu. Starkov, MD,

Yekaterinburg.

DISCLOSURE OF INTEREST: Not declared.



References

1. Овсянников Д.Ю., Бойцова Е.В., Жесткова М.А. и др. Неонатальная пульмонология: монография / под ред. Д.Ю. Овсянникова. — М.: Севен-Принт; 2022. — 168 с. [Ovsyannikov DYu, Boitsova EV, Zhestkova MA, et al. Neonatal’naya pul’monologiya: Monograph. Ovsyannikov DYu, ed. Moscow: Seven-Print; 2022. 168 p. (In Russ).]

2. Шестак Е.В., КовтунО.П., КсенофонтоваО.Л. Транзиторное тахипноэ у новорожденных: монография / под общ. ред. О.П. Ковтун. — Екатеринбург: УГМУ, 2023. — 144 с. [Shestak EV, Kovtun OP, Ksenofontova OL. Transient Tachypnea in Newborns: Monograph. Kovtun OP, ed. Ekaterinburg: USMU; 2023. 144 p. (In Russ).]

3. Alhassen Z, Vali P, Guglani L, et al. Recent Advances in Pathophysiology and Management of Transient Tachypnea of Newborn. J Perinatol. 2021;41(1):6–16. https://doi.org/10.1038/s4137202007573

4. Шестак Е.В., Ковтун О.П. Стандартизированный подход к СРАРтерапии в родовом зале у доношенных детей с врожденной инфекцией: наблюдательное исследование // Российский педиатрический журнал. — 2023. — Т. 4. — № 3. — С. 85–93. — https://doi.org/10.15690/rpj.v4i3.2618 [Shestak EV, Kovtun OP. Standardized approach to CPAP therapy in the delivery room in full-term infants with congenital infection: observational research. Russian Pediatric Journal. 2023;4(3):85–93. (In Russ). https://doi.org/10.15690/rpj.v4i3.2618]

5. Pines JM. Timing of antibiotics for acute, severe infections. Emerg Med Clin North Am. 2008;26(2):245–257, vii. doi: https://doi.org/10.1016/j.emc.2008.01.004

6. Schmatz M, Srinivasan L, Grundmeier RW, et al. Surviving Sepsis in a Referral Neonatal Intensive Care Unit: Association between Time to Antibiotic Administration and In-Hospital Outcomes. J Pediatr. 2020;217:59–65.e1. https://doi.org/10.1016/j.jpeds.2019.08.023

7. Fjalstad JW, Esaiassen E, Juvet LK, et al. Antibiotic therapy in neonates and impact on gut microbiota and antibiotic resistance development: a systematic review. J Antimicrob Chemother. 2018;73(3):569–580. https://doi.org/10.1093/jac/dkx426

8. Esaiassen E, Fjalstad JW, Juvet LK, et al. Antibiotic exposure in neonates and early adverse outcomes: a systematic review and meta-analysis. J Antimicrob Chemother. 2017;72(7):1858–1870. https://doi.org/10.1093/jac/dkx088

9. Mitre E, Susi A, Kropp LE, et al. Association Between Use of AcidSuppressive Medications and Antibiotics During Infancy and Allergic Diseases in Early Childhood. JAMA Pediatr. 2018;172(6):e180315. https://doi.org/10.1001/jamapediatrics.2018.0315

10. Rasmussen SH, Shrestha S, Bjerregaard LG, et al. Antibiotic exposure in early life and childhood overweight and obesity: A systematic review and meta-analysis. Diabetes Obes Metab. 2018;20(6):1508–1514. https://doi.org/10.1111/dom.13230

11. Senaldi L, Blatt L, Han JY, et al. A quality improvement initiative to reduce antibiotic use in transient tachypnea of the newborn. J Perinatol. 2024;44(1):119–124. https://doi.org/10.1038/s4137202301850x

12. Шестак Е.В., Ксенофонтова О.Л., Ковтун О.П., Старков В.Ю. Протокол наблюдения, обследования и антибактериальной терапии новорожденных с подозреваемой и/или подтвержденной неонатальной инфекцией // Российский педиатрический журнал. — 2024. — Т. 5. — № 2. — С. 95–107. — https://doi.org/10.15690/rpj.v5i2.2756 [Shestak EV, Ksenofontova OL, Kovtun OP, Starkov VYu. Protocol of observation, examination and antibacterial therapy of newborns with suspected and/or confirmed neonatal infection. Russian Pediatric Journal. 2024;5(2):94–106. (In Russ). https://doi.org/10.15690/rpj.v5i2.2756]

13. Овсянников Д.Ю., Володин Н.Н. Заболевания легких новорожденных: трудности диагностики, диагностические критерии и последствия // Педиатрия. Журнал им. Г.Н. Сперанского. — 2022. — Т. 101. — № 3. — С. 170–177. — https://doi.org/10.24110/0031403X20221013170177 [Ovsyannikov DYu, Volodin NN. Lung diseases in newborns: diagnostic difficulties, diagnostic criteria and consequences. Pediatria. Journal n.a. G.N. Speransky. 2022;101(3):170–177. (In Russ). https://doi.org/10.24110/0031403X20221013170177]

14. Nobile S, Sette L, Esposito C, et al. Diagnostic Accuracy of Lung Ultrasound in Neonatal Diseases: A Systematized Review. J Clin Med. 2024;13(11):3107. https://doi.org/10.3390/jcm13113107

15. Singh Y, Tissot C, Fraga MV, et al. International evidence-based guidelines on Point of Care Ultrasound (POCUS) for critically ill neonates and children issued by the POCUS Working Group of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC). Crit Care. 2020;24(1):65. https://doi.org/10.1186/s1305402027879

16. Martini S, Thewissen L, Austin T. et al. Near-infrared spectroscopy monitoring of neonatal cerebrovascular reactivity: where are we now? Pediatr Res. 2024;96(4):884–895. https://doi.org/10.1038/s41390023025746

17. Olver RE, Strang LB. Ion fluxes across the pulmonary epithelium and the secretion of lung liquid in the foetal lamb. J Physiol. 1974;241(2):327–357. https://doi.org/10.1113/jphysiol.1974.sp010659

18. Brat R, Yousef N, Klifa R, et al. Lung Ultrasonography Score to Evaluate Oxygenation and Surfactant Need in Neonates Treated With Continuous Positive Airway Pressure. JAMA Pediatr. 2015;169(8): e151797. https://doi.org/10.1001/jamapediatrics.2015.1797

19. Cleveland RH. A radiologic update on medical diseases of the newborn chest. Pediatr Radiol. 1995;25(8):631–637. https://doi.org/10.1007/BF02011835

20. Kuzniewicz MW, Puopolo KM, Fischer A, et al. A Quantitative, RiskBased Approach to the Management of Neonatal Early-Onset Sepsis. JAMA Pediatr. 2017;171(4):365–371. https://doi.org/10.1001/jamapediatrics.2016.4678

21. Sarkar S, BhagatI, DeCristofaro JD, et al. A study of the role of multiple site blood cultures in the evaluation of neonatal sepsis. J Perinatol. 2006;26(1):18–22. https://doi.org/10.1038/sj.jp.7211410

22. Chaudhuri PK, Ghosh A, Sinha V, et al. The Role of C-reactive Protein Estimation in Determining the Duration of Antibiotic Therapy in Neonatal Sepsis. Cureus. 2022;14(10):e30211. https://doi.org/10.7759/cureus.30211

23. Stocker M, Hop WC, van Rossum AM. Neonatal Procalcitonin Intervention Study (NeoPInS): Effect of Procalcitonin-guided decision making on duration of antibiotic therapy in suspected neonatal early-onset sepsis: A multi-centre randomized superiority and noninferiority Intervention Study. BMC Pediatr. 2010;10:89. https://doi.org/10.1186/147124311089

24. Ismail R, El Raggal NM, Hegazy LA, et al. Lung Ultrasound Role in Diagnosis of Neonatal Respiratory Disorders: A Prospective CrossSectional Study. Children (Basel). 2023;10(1):173. https://doi.org/10.3390/children10010173

25. He L, Sun Y, Sheng W, Yao Q. Diagnostic performance of lung ultrasound for transient tachypnea of the newborn: A meta-analysis. PLoS One. 2021;16(3):e0248827. https://doi.org/10.1371/journal.pone.0248827

26. Ma HR, Liu J, Yan WK. Accuracy and Reliability of Lung Ultrasound to Diagnose Transient Tachypnoea of the Newborn: Evidence from a Metaanalysis and Systematic Review. Am J Perinatol. 2022;39(9):973–979. https://doi.org/10.1055/s00401721134

27. Raimondi F, Yousef N, Rodriguez Fanjul J, et al. A Multicenter Lung Ultrasound Study on Transient Tachypnea of the Neonate. Neonatology. 2019;115(3):263–268. https://doi.org/10.1159/000495911

28. Liu J, Liu F, Liu Y, et al. Lung ultrasonography for the diagnosis of severe neonatal pneumonia. Chest. 2014;146(2):383–388. https://doi.org/10.1378/chest.132852

29. Xiao TT, Jin M, Ju R, et al. Value of bedside lung ultrasound in the diagnosis of neonatal pneumonia. Zhongguo Dang Dai Er Ke Za Zhi. 2018;20(6):444–448. https://doi.org/10.7499/j.issn.10088830.2018.06.003

30. Pereda MA, Chavez MA, Hooper-Miele CC, et al. Lung ultrasound for the diagnosis of pneumonia in children: a meta-analysis. Pediatrics. 2015;135(4):714–722. https://doi.org/10.1542/peds.20142833

31. Vesoulis ZA, Mintzer JP, Chock VY. Neonatal NIRS monitoring: recommendations for data capture and review of analytics. J Perinatol. 2021;41(4):675–688. https://doi.org/10.1038/s41372021009466

32. Wolfsberger CH, Pichler-Stachl E, Höller N, et al. Cerebral oxygenation immediately after birth and long-term outcome in preterm neonates-a retrospective analysis. BMC Pediatr. 2023;23(1):145. https://doi.org/10.1186/s1288702303960z

33. Dani C, Pratesi S, Luzzati M, et al. Cerebral and splanchnic oxygenation during automated control of inspired oxygen (FiO2) in preterm infants. Pediatr Pulmonol. 2021;56(7):2067–2072. https://doi.org/10.1002/ppul.25379

34. Ozdemir FE, Alan S, Aliefendioglu D. The diagnostic value of pulmonary near-infrared spectroscopy in the early distinction of neonatal pneumonia from transient tachypnea of the newborn. Pediatr Pulmonol. 2023;58(11):3271–3278. https://doi.org/10.1002/ppul.26656


Review

For citations:


Shestak E.V., Kovtun O.P., Starkov V.Yu. The Assessment of the Effectiveness of Ultrasound and Near-Infrared Spectroscopy of the Lungs for the Differential Diagnosis of Transient Tachypnea of Newborns and Congenital Pneumonia in Children over 350 Weeks of Gestation. The Prospective Study. Russian Pediatric Journal. 2024;5(4):182-191. (In Russ.) https://doi.org/10.15690/rpj.v5i4.2844

Views: 282


ISSN 2687-0843 (Online)