Preview

Российский педиатрический журнал

Расширенный поиск

Молекулярные особенности рака щитовидной железы у детей

https://doi.org/10.15690/rpj.v4i3.2617

Аннотация

Обоснование. Злокачественные новообразования щитовидной железы являются наиболее распространенными эндокринными злокачественными новообразованиями в детской возрастной группе. В отличие от взрослых, у которых чаще всего  встречаются  мутации  BRAF  и  RAS,  у  детей  наблюдаются  хромосомные  перестройки.  Актуальность  объясняется отсутствием всесторонних исследований, посвященных раку щитовидной железы у детей, в русскоязычной литературе.

Цель  исследования  —  обобщить  и  систематизировать  литературные  данные,  посвященные  молекулярным  особенностям рака щитовидной железы у детей.

Материалы и методы. Авторами был проведен поиск публикаций в электронной базе данных PubMed с использованием следующего алгоритма: Molecular AND Thyroid cancer AND pediatrics. Нами была обнаружена  451  публикация,  после  просмотра  аннотаций  в  обзор  было  включено  111  исследований,  описывающих молекулярные особенности рака щитовидной железы в педиатрической популяции. Публикации исключались по причине дублирования и несоответствия тематике настоящего исследования.

Результаты. Вместо точечных мутаций BRAF и RAS, характерных для взрослых, независимо от радиационного статуса, у детей чаще встречаются хромосомные перестройки. Реаранжировка генов RET/PTC является наиболее распространенной, за ней следуют слияния BRAF. Мутации промотора TERT, которые являются маркерами агрессивного течения заболевания у взрослых, у детей встречаются редко. Мутации DICER1, по-видимому, играют ключевую роль в педиатрических случаях фолликулярного и папиллярного рака щитовидной железы. Медуллярный рак щитовидной железы (МРЩЖ) у детей требует исключения синдрома множественных эндокринных неоплазий (МЭН 2-го типа). Опухоли, происходящие из фолликулярных клеток, отличные от МРЩЖ, редко могут быть семейными. Литературные данные о роли микроРНК в качестве биомаркера при карциномах щитовидной железы у детей на сегодняшний день ограниченны.

Об авторах

О. К. Баева
Ростовский государственный медицинский университет
Россия

Баева Оксана Константиновна, ассистент кафедры поликлинической и неотложной педиатрии

344022, Ростов-на-Дону, ул. Суворова, д. 119, тел.: +7 (927) 314-98-33



Н. С. Киселева
Марийский государственный университет
Россия

Киселева Наталья Сергеевна, ординатор

Йошкар-Ола



Э. Э. Бикташева
Башкирский государственный медицинский университет
Россия

Бикташева Элина Эдуардовна, ординатор

Уфа



Л. Р. Газизова
Башкирский государственный медицинский университет
Россия

Газизова Лилия Раиловна, ординатор

Уфа



М. И. Фимина
Оренбургский государственный медицинский университет
Россия

Фимина Маргарита Ивановна, студентка

Оренбург



И. И. Ахметова
Башкирский государственный медицинский университет
Россия

Ахметова Илюза Ирековна, ординатор

Уфа



А. Э. Казакова
Тульский государственный университет
Россия

Казакова Анастасия Эдуардовна, ординатор

Тула



К. Д. Ядренкин
Башкирский государственный медицинский университет
Россия

Ядренкин Кирилл Дмитриевич, ординатор

Уфа



Д. А. Даутова
Башкирский государственный медицинский университет
Россия

Даутова Дарья Адусовна, ординатор

Уфа



А. Д. Гришникова
Башкирский государственный медицинский университет
Россия

Гришникова Анастасия Дмитриевна, ординатор

Уфа



Э. Д. Гайсина
Башкирский государственный медицинский университет
Россия

Гайсина Эльвира Димовна, студентка

Уфа



И. А. Галиаскарова
Башкирский государственный медицинский университет
Россия

Галиаскарова Илина Адисовна, студентка

Уфа



Список литературы

1. Bauer AJ. Molecular Genetics of Thyroid Cancer in Children and Adolescents. Endocrinol Metab Clin North Am. 2017;46(2):389–403. doi: https://doi.org/10.1016/j.ecl.2017.01.014

2. Rossi ED, Pantanowitz L, Hornick JL. A worldwide journey of thyroid cancer incidence centred on tumour histology. Lancet Diabetes Endocrinol. 2021;9(4):193–194. doi: https://doi.org/10.1016/S2213-8587(21)00049-8

3. Howlader N, Noone AM, Krapcho M, et al. SEER Cancer Statistics Review, 1975–2018. National Cancer Institute. Bethesda, MD; 2021. Available online: https://seer.cancer.gov/csr/1975_2018. Accessed on August 23, 2023.

4. Chan CM, Young J, Prager J, Travers S. Pediatric Thyroid Cancer. Adv Pediatr. 2017;64(1):171–190. doi: https://doi.org/10.1016/j.yapd.2017.03.007

5. Adolescent Health. Available online: https://www.who.int/southeastasia/health-topics/adolescent-health. Accessed on August 23, 2023.

6. Francis GL, Waguespack SG, Bauer AJ, et al. Management Guidelines for Children with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2015;25(7):716–759. doi: https://doi.org/10.1089/thy.2014.0460

7. Alzahrani AS, Qasem E, Murugan AK, et al. Uncommon TERT Promoter Mutations in Pediatric Thyroid Cancer. Thyroid. 2016:26(2);235–241. doi: https://doi.org/10.1089/thy.2015.0510

8. Hardin AP, Hackell JM. Age Limit of Pediatrics. Pediatrics. 2017;140(3): e20172151. doi: https://doi.org/10.1542/peds.2017-2151

9. Buryk MA, Simons JP, Picarsic J, et al. Can malignant thyroid nodules be distinguished from benign thyroid nodules in children and adolescents by clinical characteristics? A review of 89 pediatric patients with thyroid nodules. Thyroid. 2015;25(4):392–400. doi: https://doi.org/10.1089/thy.2014.0312

10. Decaussin-Petrucci M, Deladoëy J, Hafdi-Nejjari Z, et al. Expression of CD133 in differentiated thyroid cancer of young patients. J Clin Pathol. 2015;68(6):434–440. doi: https://doi.org/10.1136/jclinpath-2014-202625

11. Espadinha C, Santos JR, Sobrinho LG, Bugalho MJ. Expression of iodine metabolism genes in human thyroid tissues: evidence for age and BRAFV600E mutation dependency. Clin Endocrinol (Oxf). 2009;70(4):629–635. doi: https://doi.org/10.1111/j.1365-2265.2008.03376.x

12. Monaco SE, Pantanowitz L, Khalbuss WE, et al. Cytomorphological and molecular genetic findings in pediatric thyroid fine-needle aspiration. Cancer Cytopathol. 2012;120(5):342–350. doi: https://doi.org/10.1002/cncy.21199

13. Sugino K, Nagahama M, Kitagawa W, et al. Cutoff Age Between Pediatric and Adult Thyroid Differentiated Cancer: Is 18 Years Old Appropriate? Thyroid. 2022;32(2):145–152. doi: https://doi.org/10.1089/thy.2021.0255

14. Paulson VA, Rudzinski ER, Hawkins DS. Thyroid Cancer in the Pediatric Population. Genes (Basel). 2019;10(9):723. doi: https://doi.org/10.3390/genes10090723

15. Cherella CE, Angell TE, Richman DM, et al. Differences in Thyroid Nodule Cytology and Malignancy Risk Between Children and Adults. Thyroid. 2019;29(8):1097–1104. doi: https://doi.org/10.1089/thy.2018.0728

16. Qian ZJ, Jin MC, Meister KD, Megwalu UC. Pediatric Thyroid Cancer Incidence and Mortality Trends in the United States, 1973–2013. JAMA Otolaryngol Head Neck Surg. 2019;145(7):617–623. doi: https://doi.org/10.1001/jamaoto.2019.0898

17. Jarzab B, Handkiewicz-Junak D, Wloch J. Juvenile differentiated thyroid carcinoma and the role of radioiodine in its treatment: a qualitative review. Endocr Relat Cancer. 2005;12(4):773–803. doi: https://doi.org/10.1677/erc.1.00880

18. Hogan AR, Zhuge Y, Perez EA, et al. Pediatric thyroid carcinoma: incidence and outcomes in 1753 patients. J Surg Res. 2009;156(1):167– 172. doi: https://doi.org/10.1016/j.jss.2009.03.098

19. Demidchik YE, Saenko VA, Yamashita S. Childhood thyroid cancer in Belarus, Russia, and Ukraine after Chernobyl and at present. Arq Bras Endocrinol Metabol. 2007;51(5):748–762. doi: https://doi.org/10.1590/s0004-27302007000500012

20. Cancer Today. In: International Agency of Research of Cancer: Official website. 2023. Available online: https://gco.iarc.fr/today/online-analysis-pie?v=2020&mode=population&mode_population=continents&population=900&populations=900&key=total&sex=0&cancer=32&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=3&nb_items=7&group_cancer=0&include_nmsc=1&include_nmsc_other=1&half_pie=0&donut=0. Accessed on August 23, 2023.

21. Parisi MT, Eslamy H, Mankoff D. Management of Differentiated Thyroid Cancer in Children: Focus on the American Thyroid Association Pediatric Guidelines. Semin Nucl Med. 2016;46(2):147–164. doi: https://doi.org/10.1053/j.semnuclmed.2015.10.006

22. Nikiforov YE, Nikiforova M, Fagin JA. Prevalence of minisatellite and microsatellite instability in radiation-induced post-Chernobyl pediatric thyroid carcinomas. Oncogene. 1998;17(15):1983–1988. doi: https://doi.org/10.1038/sj.onc.1202120

23. Niedziela M. Pathogenesis, diagnosis and management of thyroid nodules in children. Endocr Relat Cancer. 2006;13(2):427–453. doi: https://doi.org/10.1677/erc.1.00882

24. Nikiforov Y, Gnepp DR, Fagin JA. Thyroid lesions in children and adolescents after the Chernobyl disaster: implications for the study of radiation tumorigenesis. J Clin Endocrinol Metab. 1996;81(1):9–14. doi: https://doi.org/10.1210/jcem.81.1.8550800

25. Иванов В.К., Горский А.И., Полькин В.В. и др. Динамика заболеваемости раком щитовидной железы населения России: основные факторы риска // Радиация и риск (Бюллетень Национального радиационно-эпидемиологического регистра). — 2022. — Т. 31. — № 4. — С. 6–20. — doi: https://doi.org/10.21870/0131-3878-2022-31-4-6-20

26. Nikiforov YE, Rowland JM, Bove KE, et al. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997;57(9):1690–1694.

27. Fenton CL, Lukes Y, Nicholson D, et al. The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metab. 2000;85(3):1170–1175. doi: https://doi.org/10.1210/jcem.85.3.6472

28. Rabes HM, Demidchik EP, Sidorow JD, et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res. 2000;6(3):1093–1103.

29. Якушина В.Д., Лернер Л.В., Казубская Т.П. и др. Молекулярногенетическая структура фолликулярно-клеточного рака щитовидной железы // Клиническая и экспериментальная тиреоидология. — 2016. — T. 12. — № 2. — C. 55–64. — doi: https://doi.org/10.14341/ket2016255-64

30. Iyama K, Matsuse M, Mitsutake N, et al. Identification of Three Novel Fusion Oncogenes, SQSTM1/NTRK3, AFAP1L2/RET, and PPFIBP2/ RET, in Thyroid Cancers of Young Patients in Fukushima. Thyroid. 2017;27(6):811–818. doi: https://doi.org/10.1089/thy.2016.0673

31. Dvorkin S, Robenshtok E, Hirsch D, et al. Differentiated thyroid cancer is associated with less aggressive disease and better outcome in patients with coexisting Hashimotos thyroiditis. J Clin Endocrinol Metab. 2013;98(6):2409–2414. doi: https://doi.org/10.1210/jc.2013–1309

32. Loh KC, Greenspan FS, Dong F, et al. Influence of lymphocytic thyroiditis on the prognostic outcome of patients with papillary thyroid carcinoma. J Clin Endocrinol Metab. 1999;84(2):458–463. doi: https://doi.org/10.1210/jcem.84.2.5443

33. Kashima K, Yokoyama S, Noguchi S, et al. Chronic thyroiditis as a favorable prognostic factor in papillary thyroid carcinoma. Thyroid. 1998;8(3):197–202. doi: https://doi.org/10.1089/thy.1998.8.197

34. Singh B, Shaha AR, Trivedi H, et al. Coexistent Hashimoto’s thyroiditis with papillary thyroid carcinoma: impact on presentation, management, and outcome. Surgery. 1999;126(6):1070–1077. doi: https://doi.org/10.1067/msy.2099.101431

35. Corrias A, Cassio A, Weber G, et al. Thyroid nodules and cancer in children and adolescents affected by autoimmune thyroiditis. Arch Pediatr Adolesc Med. 2008;162(6):526–531. doi: https://doi.org/10.1001/archpedi.162.6.526

36. Sur ML, Gaga R, Lazăr C, et al. Papillary thyroid carcinoma in children with Hashimoto’s thyroiditis — a review of the literature between 2000 and 2020. J Pediatr Endocrinol Metab. 2020;33(12):1511– 1517. doi: https://doi.org/10.1515/jpem-2020-0383

37. Ren PY, Liu J, Xue S, Chen G. Pediatric differentiated thyroid carcinoma: The clinicopathological features and the coexistence of Hashimoto’s thyroiditis. Asian J Surg. 2019;42(1):112–119. doi: https://doi.org/10.1016/j.asjsur.2017.10.006

38. Penta L, Cofini M, Lanciotti L, et al. Hashimoto’s Disease and Thyroid Cancer in Children: Are They Associated? Front Endocrinol (Lausanne). 2018;9:565. doi: 10.3389/fendo.2018.00565

39. Subhi O, Schulten HJ, Bagatian N, et al. Genetic relationship between Hashimoto’s thyroiditis and papillary thyroid carcinoma with coexisting Hashimoto’s thyroiditis. PLoS One. 2020;15(6): e0234566. doi: https://doi.org/10.1371/journal.pone.0234566

40. Zimmermann MB, Galetti V. Iodine intake as a risk factor for thyroid cancer: a comprehensive review of animal and human studies. Thyroid Res. 2015;8:8. doi: https://doi.org/10.1186/s13044-015-0020-8

41. Drozd V, Branovan DI, Reiners C. Increasing Incidence of Thyroid Carcinoma: Risk Factors and Seeking Approaches for Primary Prevention. Int J Thyroidol. 2020;13(2):95–110. doi: https://doi.org/10.11106/ijt.2020.13.2.95

42. Kumar A, Bal CS. Differentiated thyroid cancer. Indian J Pediatr. 2003;70(9):707–713. doi: https://doi.org/10.1007/BF02724312

43. Сердюкова О.С., Титов С.Е., Малахина Е.С., Рымар О.Д. МикроРНК — перспективные молекулярные маркеры обнаружения рака в узлах щитовидной железы // Клиническая и экспериментальная тиреоидология. — 2018. — Т. 14. — № 3. — С. 140–148. — doi: https://doi.org/10.14341/ket9774

44. Nosé V. Familial thyroid cancer: a review. Mod Pathol. 2011;24(2): 19–33. doi: https://doi.org/10.1038/modpathol.2010.147

45. Giannelli SM, McPhaul L, Nakamoto J, Gianoukakis AG. Familial adenomatous polyposis-associated, cribriform morular variant of papillary thyroid carcinoma harboring a K-RAS mutation: case presentation and review of molecular mechanisms. Thyroid. 2014;24(7):1184–1189. doi: https://doi.org/10.1089/thy.2013.0589

46. Richards ML. Familial syndromes associated with thyroid cancer in the era of personalized medicine. Thyroid. 2010;20(7):707–713. doi: https://doi.org/10.1089/thy.2010.1641

47. Bae JS, Jung SH, Hirokawa M, et al. High Prevalence of DICER1 Mutations and Low Frequency of Gene Fusions in Pediatric Follicular-Patterned Tumors of the Thyroid. Endocr Pathol. 2021;32(3):336– 346. doi: https://doi.org/10.1007/s12022-021-09688-9

48. Wasserman JD, Sabbaghian N, Fahiminiya S, et al. DICER1 Mutations Are Frequent in Adolescent-Onset Papillary Thyroid Carcinoma. J Clin Endocrinol Metab. 2018;103(5):2009–2015. doi: https://doi.org/10.1210/jc.2017-02698

49. Lee YA, Im SW, Jung KC, et al. Predominant DICER1 Pathogenic Variants in Pediatric Follicular Thyroid Carcinomas. Thyroid. 2020;30(8):1120–1131. doi: https://doi.org/10.1089/thy.2019.0233

50. Juhlin CC, Stenman A, Zedenius J. Macrofollicular variant follicular thyroid tumors are DICER1 mutated and exhibit distinct histological features. Histopathology. 2021;79(4):661–666. doi: https://doi.org/10.1111/his.14416

51. Chernock RD, Rivera B, Borrelli N, et al. Poorly differentiated thyroid carcinoma of childhood and adolescence: a distinct entity characterized by DICER1 mutations. Mod Pathol. 2020;33(7):1264– 1274. doi: https://doi.org/10.1038/s41379-020-0458-7

52. Rooper LM, Bynum JP, Miller KP, et al. Recurrent DICER1 Hotspot Mutations in Malignant Thyroid Gland Teratomas: Molecular Characterization and Proposal for a Separate Classification. Am J Surg Pathol. 2020;44(6):826–833. doi: https://doi.org/10.1097/PAS.0000000000001430

53. Nosé V. DICER1 gene alterations in thyroid diseases. Cancer Cytopathol. 2020;128(10):688–689. doi: https://doi.org/10.1002/cncy.22327

54. Durieux E, Descotes F, Mauduit C, et al. The co-occurrence of an ovarian Sertoli-Leydig cell tumor with a thyroid carcinoma is highly suggestive of a DICER1 syndrome. Virchows Arch. 2016;468(5):631– 636. doi: https://doi.org/10.1007/s00428-016-1922-0

55. Capezzone M, Robenshtok E, Cantara S, Castagna MG. Familial non-medullary thyroid cancer: a critical review. J Endocrinol Invest. 2021;44(5):943–950. doi: https://doi.org/10.1007/s40618-020-01435-x

56. LiVolsi VA, Baraban E, Baloch ZW. Familial thyroid carcinoma: The road less traveled in thyroid pathology — An update. Diagn Histopathol. 2017;8(23):366–377. doi: https://doi.org/10.1016/j.mpdhp.2017.06.004

57. Starenki D, Park JI. Pediatric Medullary Thyroid Carcinoma. J Pediatr Oncol. 2015;3(2):29–37. doi: https://doi.org/10.14205/2309-3021.2015.03.02.1

58. Rossi ED, Mehrotra S, Kilic AI, et al. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features in the pediatric age group. Cancer Cytopathol. 2018;126(1):27–35. doi: https://doi.org/10.1002/cncy.21933

59. Massimino M, Evans DB, Podda M, et al. Thyroid cancer in adolescents and young adults. Pediatr Blood Cancer. 2018;65(8): e27025. doi: https://doi.org/10.1002/pbc.27025

60. Collini P, Mattavelli F, Pellegrinelli A, et al. Papillary carcinoma of the thyroid gland of childhood and adolescence: Morphologic subtypes, biologic behavior and prognosis: a clinicopathologic study of 42 sporadic cases treated at a single institution during a 30-year period. Am J Surg Pathol. 2006;30(11):1420–1426. doi: https://doi.org/10.1097/01.pas.0000213264.07597.9a

61. Onder S, Ozturk Sari S, Yegen G, et al. Classic Architecture with Multicentricity and Local Recurrence, and Absence of TERT Promoter Mutations are Correlates of BRAF (V600E) Harboring Pediatric Papillary Thyroid Carcinomas. Endocr Pathol. 2016;27(2):153–161. doi: https://doi.org/10.1007/s12022-016-9420-0

62. Cordioli MI, Moraes L, Cury AN, Cerutti JM. Are we really at the dawn of understanding sporadic pediatric thyroid carcinoma? Endocr Relat Cancer. 2015;22(6):R311–R324. doi: https://doi.org/10.1530/ERC-15-0381

63. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676– 690. doi: https://doi.org/10.1016/j.cell.2014.09.050

64. Mitsutake N, Saenko V. Molecular pathogenesis of pediatric thyroid carcinoma. J Radiat Res. 2021;62(1):71–77. doi: https://doi.org/10.1093/jrr/rraa096

65. Oishi N, Kondo T, Nakazawa T, et al. Frequent BRAFV600E and Absence of TERT Promoter Mutations Characterize Sporadic Pediatric Papillary Thyroid Carcinomas in Japan. Endocr Pathol. 2017;28(2):103–111. doi: https://doi.org/10.1007/s12022-017-9470-y

66. Henke LE, Perkins SM, Pfeifer JD, et al. BRAF V600E mutational status in pediatric thyroid cancer. Pediatr Blood Cancer. 2014;61(7):1168–1172. doi: https://doi.org/10.1002/pbc.24935

67. Nikita ME, Jiang W, Cheng SM, et al. Mutational Analysis in Pediatric Thyroid Cancer and Correlations with Age, Ethnicity, and Clinical Presentation. Thyroid. 2016;26(2):227–234. doi: https://doi.org/10.1089/thy.2015.0401

68. Mitsutake N, Fukushima T, Matsuse M, et al. BRAF(V600E) mutation is highly prevalent in thyroid carcinomas in the young population in Fukushima: a different oncogenic profile from Chernobyl. Sci Rep. 2015;5:16976. doi: https://doi.org/10.1038/srep16976

69. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1–133. doi: https://doi.org/10.1089/thy.2015.0020

70. Galuppini F, Vianello F, Censi S, et al. Differentiated Thyroid Carcinoma in Pediatric Age: Genetic and Clinical Scenario. Front Endocrinol (Lausanne). 2019;10:552. doi: https://doi.org/10.3389/fendo.2019.00552

71. Chakraborty D, Shakya S, Ballal S, et al. BRAF V600E and TERT promoter mutations in paediatric and young adult papillary thyroid cancer and clinicopathological correlation. J Pediatr Endocrinol Metab. 2020;33(11):1465–1474. doi: https://doi.org/10.1515/jpem-2020-0174

72. Alzahrani AS, Murugan AK, Qasem E, et al. Single Point Mutations in Pediatric Differentiated Thyroid Cancer. Thyroid. 2017;27(2):189– 196. doi: https://doi.org/10.1089/thy.2016.0339

73. Rangel-Pozzo A, Sisdelli L, Cordioli MIV, et al. Genetic Landscape of Papillary Thyroid Carcinoma and Nuclear Architecture: An Overview Comparing Pediatric and Adult Populations. Cancers (Basel). 2020;12(11):3146. doi: https://doi.org/10.3390/cancers12113146

74. Cordioli MI, Moraes L, Carvalheira G, et al. AGK-BRAF gene fusion is a recurrent event in sporadic pediatric thyroid carcinoma. Cancer Med. 2016;5(7):1535–1541. doi: https://doi.org/10.1002/cam4.698

75. Sisdelli L, Cordioli MICV, Vaisman F, et al. AGK-BRAF is associated with distant metastasis and younger age in pediatric papillary thyroid carcinoma. Pediatr Blood Cancer. 2019;66(7): e27707. doi: https://doi.org/10.1002/pbc.27707

76. Cordioli MI, Moraes L, Bastos AU, et al. Fusion Oncogenes Are the Main Genetic Events Found in Sporadic Papillary Thyroid Carcinomas from Children. Thyroid. 2017;27(2):182–188. doi: https://doi.org/10.1089/thy.2016.0387

77. Pekova B, Sykorova V, Dvorakova S, et al. RET, NTRK, ALK, BRAF, and MET Fusions in a Large Cohort of Pediatric Papillary Thyroid Carcinomas. Thyroid. 2020;30(12):1771–1780. doi: https://doi.org/10.1089/thy.2019.0802

78. Efanov AA, Brenner AV, Bogdanova TI, et al. Investigation of the Relationship Between Radiation Dose and Gene Mutations and Fusions in Post-Chernobyl Thyroid Cance. J Natl Cancer Inst. 2018;110(4):371–378. doi: https://doi.org/10.1093/jnci/djx209

79. Rosenbaum E, Hosler G, Zahurak M, et al. Mutational activation of BRAF is not a major event in sporadic childhood papillary thyroid carcinoma. Mod Pathol. 2005;18(7):898–902. doi: https://doi.org/10.1038/modpathol.3800252

80. Marotta V, Bifulco M, Vitale M. Significance of RAS Mutations in Thyroid Benign Nodules and Non-Medullary Thyroid Cancer. Cancers (Basel). 2021;13(15):3785. doi: https://doi.org/10.3390/cancers13153785

81. Kumagai A, Namba H, Saenko VA, et al. Low frequency of BRAFT1796A mutations in childhood thyroid carcinomas. J Clin Endocrinol Metab. 2004;89(9):4280–4284. doi: https://doi.org/10.1210/jc.2004-0172

82. Franco AT, Labourier E, Ablordeppey KK, et al. miRNA expression can classify pediatric thyroid lesions and increases the diagnostic yield of mutation testing. Pediatr Blood Cancer. 2020;67(6):e28276. doi: https://doi.org/10.1002/pbc.28276

83. Lee YA, Lee H, Im SW, et al. NTRK and RET fusion-directed therapy in pediatric thyroid cancer yields a tumor response and radioiodine uptake. J Clin Invest. 2021;131(18):e144847. doi: https://doi.org/10.1172/JCI144847

84. Geng J, Liu Y, Guo Y, et al. Correlation between TERT C228T and clinic-pathological features in pediatric papillary thyroid carcinoma. Sci China Life Sci. 2019;62(12):1563–1571. doi: https://doi.org/10.1007/s11427-018-9546-5

85. Prasad ML, Vyas M, Horne MJ, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer. 2016;122(7):1097–1107. doi: https://doi.org/10.1002/cncr.29887

86. Propst EJ, Wasserman JD, Gorodensky J, et al. Patterns and Predictors of Metastatic Spread to the Neck in Pediatric Thyroid Carcinoma. Laryngoscope. 2021;131(3): E1002–E1009. doi: https://doi.org/10.1002/lary.28937

87. Aschebrook-Kilfoy B, Grogan RH, Ward MH, et al.Follicular thyroid cancer incidence patterns in the United States, 1980–2009. Thyroid. 2013;23(8):1015–1021. doi: https://doi.org/10.1089/thy.2012.0356

88. Vuong HG, Kondo T, Oishi N, et al. Paediatric follicular thyroid carcinoma — indolent cancer with low prevalence of RAS mutations and absence of PAX8-PPARG fusion in a Japanese population. Histopathology. 2017;71(5):760–768. doi: https://doi.org/10.1111/his.13285

89. Ito Y, Miyauchi A, Tomoda C, et al. Prognostic significance of patient age in minimally and widely invasive follicular thyroid carcinoma: investigation of three age groups. Endocr J. 2014;61(3):265–271. doi: https://doi.org/10.1507/endocrj.ej13-0512

90. Nikiforova MN, Lynch RA, Biddinger PW, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003;88(5):2318–2326. doi: https://doi.org/10.1210/jc.2002-021907

91. Fukahori M, Yoshida A, Hayashi H, et al. The associations between RAS mutations and clinical characteristics in follicular thyroid tumors: new insights from a single center and a large patient cohort. Thyroid. 2012;22(7):683–689. doi: https://doi.org/10.1089/thy.2011.0261

92. Nikiforova MN, Biddinger PW, Caudill CM, et al. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol. 2002;26(8):1016–1023. doi: https://doi.org/10.1097/00000478-200208000-00006

93. Yoo SK, Lee S, Kim SJ, et al. Comprehensive Analysis of the Transcriptional and Mutational Landscape of Follicular and Papillary Thyroid Cancers. PLoS Genet. 2016;12(8):e1006239. doi: https://doi.org/10.1371/journal.pgen.1006239

94. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):569–580. doi: https://doi.org/10.1038/nrendo.2011.142

95. Mostoufi-Moab S, Labourier E, Sullivan L, et al. Molecular Testing for Oncogenic Gene Alterations in Pediatric Thyroid Lesions. Thyroid. 2018;28(1):60–67. doi: https://doi.org/10.1089/thy.2017.0059

96. Ballester LY, Sarabia SF, Sayeed H, et al. Integrating Molecular Testing in the Diagnosis and Management of Children with Thyroid Lesions. Pediatr Dev Pathol. 2016;19(2):94–100. doi: https://doi.org/10.2350/15-05-1638-OA.1

97. Suster D, Michal M, Nishino M, et al. Papillary thyroid carcinoma with prominent myofibroblastic stromal component: clinicopathologic, immunohistochemical and next-generation sequencing study of seven cases. Mod Pathol. 2020;33(9):1702–1711. doi: https://doi.org/10.1038/s41379-020-0539-7

98. Sastre-Perona A, Santisteban P. Role of the wnt pathway in thyroid cancer. Front Endocrinol (Lausanne). 2012;3:31. doi: https://doi.org/10.3389/fendo.2012.00031

99. Sastre-Perona A, Riesco-Eizaguirre G, Zaballos MA, Santisteban P. β-catenin signaling is required for RAS-driven thyroid cancer through PI3K activation. Oncotarget. 2016;7(31):49435–49449. doi: https://doi.org/10.18632/oncotarget.10356

100. Kremenevskaja N, von Wasielewski R, Rao AS, et al. Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene. 2005;24(13):2144–2154. doi: https://doi.org/10.1038/sj.onc.1208370

101. Ngeow J, Mester J, Rybicki LA, et al. Incidence and clinical characteristics of thyroid cancer in prospective series of individuals with Cowden and Cowden-like syndrome characterized by germline PTEN, SDH, or KLLN alterations. J Clin Endocrinol Metab. 2011;96(12): E2063–E2071. doi: https://doi.org/10.1210/jc.2011–1616

102. Pilarski R, Burt R, Kohlman W, et al. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst. 2013;105(21):1607–1616. doi: https://doi.org/10.1093/jnci/djt277

103. Rivkees SA, Mazzaferri EL, Verburg FA, et al. The treatment of differentiated thyroid cancer in children: emphasis on surgical approach and radioactive iodine therapy. Endocr Rev. 2011;32(6):798–826. doi: https://doi.org/10.1210/er.2011-0011

104. Iglesias ML, Schmidt A, Ghuzlan AA, et al. Radiation exposure and thyroid cancer: a review. Arch Endocrinol Metab. 2017;61(2):180– 187. doi: https://doi.org/10.1590/2359-3997000000257

105. Bhatia S, Yasui Y, Robison LL, et al. High risk of subsequent neoplasms continues with extended follow-up of childhood Hodgkin’s disease: report from the Late Effects Study Group. J Clin Oncol. 2003;21(23):4386–4394. doi: https://doi.org/10.1200/JCO.2003.11.059

106. The Bethesda System for Reporting Thyroid Cytopathology: Definitions, Criteria, and Explanatory Notes. Ali SZ, Cibas ES, eds. 2nd ed. Springer; Cham, Switzerland: 2018.

107. Lloyd RV, Osamura RY, Kloppel G, et al. WHO Classification of Tumours of Endocrine Organ. Lyon, France: International Agency for Research on Cancer (IARC); 2017. pp. 65–143.

108. LiVolsi VA. Papillary thyroid carcinoma: an update. Mod Pathol. 2011;24(2):1–9. doi: https://doi.org/10.1038/modpathol.2010.129

109. Koo JS, Hong S, Park CS. Diffuse sclerosing variant is a major subtype of papillary thyroid carcinoma in the young. Thyroid. 2009;19(11):1225–1231. doi: https://doi.org/10.1089/thy.2009.0073

110. Canberk S, Ferreira JC, Pereira L, et al. Analyzing the Role of DICER1 Germline Variations in Papillary Thyroid Carcinoma. Eur Thyroid J. 2021;9(6):296–303. doi: https://doi.org/10.1159/000509183

111. Zhao Z, Yin XD, Zhang XH, et al. Comparison of pediatric and adult medullary thyroid carcinoma based on SEER program. Sci Rep. 2020;10(1):13310. doi: https://doi.org/10.1038/s41598-020-70439-7

112. Moline J, Eng C. Multiple endocrine neoplasia type 2: an overview. Genet Med. 2011;13(9):755–764. doi: https://doi.org/10.1097/GIM.0b013e318216cc6d

113. Carlson KM, Dou S, Chi D, et al. Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B. Proc Natl Acad Sci U S A. 1994;91(4):1579–1583. doi: https://doi.org/10.1073/pnas.91.4.1579

114. Wells SA Jr, Asa SL, Dralle H, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610. doi: https://doi.org/10.1089/thy.2014.0335


Рецензия

Для цитирования:


Баева О.К., Киселева Н.С., Бикташева Э.Э., Газизова Л.Р., Фимина М.И., Ахметова И.И., Казакова А.Э., Ядренкин К.Д., Даутова Д.А., Гришникова А.Д., Гайсина Э.Д., Галиаскарова И.А. Молекулярные особенности рака щитовидной железы у детей. Российский педиатрический журнал. 2023;4(3):73-84. https://doi.org/10.15690/rpj.v4i3.2617

For citation:


Baeva O.K., Kiseleva N.S., Biktasheva E.E., Gazizova L.R., Fimina M.I., Akhmetova I.I., Kazakova A.E., Yadrenkin K.D., Dautova D.A., Grishnikova A.D., Gaisina E.D., Galiaskarova I.A. Molecular features of thyroid cancer in children. Russian Pediatric Journal. 2023;4(3):73-84. (In Russ.) https://doi.org/10.15690/rpj.v4i3.2617

Просмотров: 634


Creative Commons License
Контент доступен под лицензией Attribution-NonCommercial-NoDerivatives 4.0 International.


ISSN 2687-0843 (Online)